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This work involves active control of fundamental two- and three-dimensional 
amplified modes in an axisymmetric jet by introducing localized acoustic 
disturbances produced by an azimuthal array of miniature speakers placed close to 
the jet lip on the exit face. The independent control of each speaker output allowed 
different azimuthal amplitude and phase distributions of periodic inputs. The types 
of inputs used in this study consisted of conditions to force helical mode pairs with 
the same frequency and equal but opposite azimuthal wavenumbers, m = & 1, 
separately, or with axisymmetric (m = 0) modes. Three forcing conditions were 
studied in detail. The first consisted of a weakly amplified helical mode pair which 
was essentially ‘superposed’ with the natural jet instability modes. This provided a 
reference to the second case which consisted of the same helical mode pairs along with 
an axisymmetric mode at the harmonic streamwise wavenumber. This combination 
led to the resonant growth of the otherwise weakly (linear) amplified subharmonic 
helical modes. A weakly nonlinear three-wave amplitude evolution equation with a 
coupling coefficient derived from the data was found to model the enhanced growth 
of the subharmonic helical modes well. The third case consisted of forcing only m = 
T l  helical modes at a frequency which was close to the most amplified. This was 
compared to the results of Corke et al. (1991) who forced an axisymmetric mode at 
the same frequency and found it to lead to the enhanced growth of near-subharmonic 
modes, as well as numerous sum and difference modes. The helical modes had effects 
identical to the previous work and confirmed the resonant amplification of a near- 
subharmonic mode. The amplitude development was also well represented by the 
nonlinear amplitude equation, including the dependence of the streamwise 
amplification rate on the azimuthal change in the fundamental-mode initial 
amplitude. However, the coupling coefficient in this case was approximately one- 
third that with exact fundamental-subharmonic resonance. Finally we offer some 
explanation for the selection of the different mode frequencies in this case. 

1. Introduction 
During the past few decades, many theoretical and experimental studies have been 

done to enhance our understanding of the evolution of the flow in axisymmetric jets. 
From these many investigations, some observations are universally apparent. 
Among these is the complication (and added interest) of studying this flow, which 
stems from the fact that the axisymmetric jet has two distinct lengthscales, the 
momentum thickness, 0, and the jet diameter, D.  The momentum thickness is 
generally the appropriate lengthscale for the near-field dynamics (near the jet exit), 
and the jet diameter generally governs the evolution in the far field (greater than 
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three diameters downstream of the jet exit). Added to this, when the ratio of these 
two lengthscales (O/D) is small, the initial shear-layer dynamics behave essentially as 
a plane mixing layer. TJltimately however, three-dimensional effects become more 
pronounced downstream as the initial shear layer spreads. 

Linear stability analysis of axisymmetric jets with thin initial shear layers (i.e. O/D 
< l),  such as by Michalke (1971), Mattingly & Chang (1974) and Plaschko (1979), has 
predicted that the initial region of the jet is equally unstable to both axisymmetric 
(m = 0) and the first helical modes (m = + or - 1 ) .  This has been confirmed in the 
experiments of Drubka (1981), Strange & Crighton (1981), Cohen & Wygnanski 
(1987u, b ) ,  Rice, Raman & Reshotko (1990), Raman (1991) and Corke, Shakib & 
Nagib (1991). However, the short-time spectral estimates by Corke et al. (1991) 
indicated that these modes rarely (if ever) exist together. Rather, they were observed 
to  non-deterministically switch from one mode type to the other, presumably as a 
result of stochastic disturbances a t  the jet exit lip. 

Although the linear characteristics of these two modes are similar, Mankbadi & Liu 
(1981) have shown that their nonlinear development is quite different. As a result of 
nonlinear effects, the streamwise lifespan of the first helical mode is less than that of 
the axisyrnmetric mode. However, the mechanism which limits the streamwise 
extent of this mode also makes it more efficient in pumping energy into fine-scale 
incoherent motions. The net result is that helical modes are still more effective in 
enhancing fine-scale turbulence than their axisymmetric counterpart. Strange (1981) 
had observed this trend in his experiment where turbulent fluctuations were 
observed to increase significantly when the jet was excited with helical modes. 

Since the streamwise extent of growth of a mode is proportional to its wavelength 
(energy saturation occurs after approximately four wavelengths downstream), 
longer-wavelength helical modes have a greater potential for a significant and 
sustaining influence on turbulence production in jets. From linear theory, such lower- 
frequency modes are considered less important owing to  their lower amplification 
rates. However, in the presence of a properly selected more-amplified mode, 
intermodal energy transfer can lead to enhanced growth. A similar mechanism to this 
has been shown to govern the first development of three-dimensional modes in 
boundary layers (see for example Herbert 1988) and in wakes (Corke, Krull & 
Ghassemi 1992). In shear layers in jets, Cohen & Wygnanski (1987u, b )  were the first 
to appreciate the significance of this mechanism. Although their analysis provides 
the framework for such interactions, the detailed measurements within the initial 
development region containing the linear and weakly nonlinear regimes was not 
complete. This work is an attempt to document this initial stage under conditions 
with controlled initial disturbances which promote the resonant growth of otherwise 
less-amplified helical modes in jets. 

2. Experimental method 
This experiment was performed in the same jet facility that was used by Drubka 

(1981), Shakib (1985), Corke et aZ. (1985, 1991), and Reisenthel, Xiong & Nagib 
(1991). Its  very low core turbulence intensity level (d /q  = 0.05%) makes it well 
suited for measurements on stability and mode interactions. The characteristics of 
this jet have been extensively documented in these cited investigations in terms of 
eigenmode distributions of  the fundamental instability and of interacted modes, 
along with their dependence on changing initial conditions including Reynolds 
number, initial shear-layer thickness and core disturbance level. 
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FIGURE 1. (a) Photograph of jet exit face with 12 miniature speakers and circular smoke-wire in 

place, and ( b )  schematic of coordinate system for measurements. 

Our objective is to introduce disturbances at the lip of the jet that will promote the 
growth of axisymmetric and helical modes. In  our previous work (Corke et al. 1991) 
we were only interested in forcing axisymmetric modes. In  that case we could use a 
far-field sound source. In  order to excite helical modes, we need an azimuthally 
varying amplitude distribution around the exit lip of the jet. To do this we placed 
an array of 12 miniature speakers on the exit face of the jet. Figure l ( a )  shows a 
photograph of the jet, viewed while looking upstream. The 12 speakers are visible as 
the small disks which rim the jet exit. To provide a scale, the jet exit diameter is 
5.08 em. Also seen in the photograph are the support arms (which appear as radial 
spokes) for a circular smoke-wire which was used for flow visualization. 
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FIGURE 2. Azimuthal variation of normalized sound pressure amplitude from 12 speakers to 

seed m = 0 (0) and m = 1 (0) modes. 

Special care was taken in the design of the fixture for holding the speaker array. 
Specifically we were concerned with any passive influence that it would have on the 
basic flow. The basic flow and stability characteristics without and with the speaker 
array were documented by Kusek, Corke & Reiaenthel(l990). These confirmed that 
it had a negligible passive influence on the flow. 

For helical modes, our approach was to simultaneously introduce wave pairs with 
equal but opposite signed azimuthal wavenumbers. This is different from Cohen & 
Wygnanski (1987 b)  who introduced only a single helical mode. The motivation in our 
approach is that either signed mode has the same linear stability properties, and in 
an interaction with an axisymmetric mode with the harmonic streamwise 
wavenumber, the opposite signed helical mode will be produced. For example, the 
observation of a helical mode with the azimuthal wavenumber of the opposite sign 
to their forced helical mode was used by Cohen & Wygnanski to verify resonance. 
Long & Peterson (1922) introduced pairs of m = + 1 helical modes, without a 
simultaneous m = 0 mode. 

To excite a helical mode with positive wavenumber m (clockwise moving), and 
frequency w ,  the periodic time series to any individual speaker located at  azimuthal 
angle y would be A,(t, y )  = d sin (my+&+ $J. Here, $1 is an arbitrary phase shift. 
The opposite-going, equsl-amplitude helical mode with wavenumber - m would be 
produced by the periodic function A,(t, y )  = d sin (--my+ ~ t + $ , ) .  The addition 
of these two periodic functions yields A(t ,  y )  = 2 d  sin (ot+a($,+$,) cos (my+ 
a($, - 4,)). Therefore, to produce equal and opposite helical modes with azimuthal 
wavenumber f m  and frequency w ,  each speaker operates with a periodic input, 
sin ( ~ t + + ( $ ~  +#,)), and amplitude determined by its azimuthal position according to 
2 d  cos (my+#q51-q52)). With 12 speakers it is possible to excite helical modes with 
azimuthal wavenumbers up to rn = +6, (i.e. every other speaker 180" apart in 
phase). 

In  this study we only introduced axisymmetric (m = 0) and m = k 1 helical modes. 
Figure 2 documents the measured sound pressure level from the speakers (symbols) 
and ideal amplitude (line) distributions in order to introduce these modes. In this 
case, it is presented as a rectified output, where a 180° phase shift actually occurs 
across the y-locations of amplitude minima (90" and 270"). 
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Other than the method for introducing disturbances, the experimental conditions, 
and measurement and data processing techniques are similar to those previously 
used in this facility and reported by Corke et al. (1991). This experiment was 
performed at a single Reynolds number, Re, = 70000, which was the upper value 
used in that previous work. 

The measurements consisted of digitally acquiring voltage time series proportional 
to the unsteady pressure fluctuations at  the exit lip of the jet and streamwise velocity 
component in the shear layer at different (x, r ,  7)-locations. The coordinate frame is 
shown in the schematic of figure 1 ( b ) .  In  the x-direction 11 equally spaced positions 
were sampled. These started just downstream of the jet exit lip and extended past 
the location of energy saturation of all the modes of interest. A t  any (x, y)-location, 
19 points were sampled in the radial direction. These were spaced to be at  equal mean 
velocity increments, and extended from 0.99 to 0.1 q. To simulate traversing the 
velocity sensor in the y-direction, the speaker array was rotated. This transformation 
is consistent for those modes which are introduced by the speaker array as well as 
those modes which are related to these through nonlinear interactions, as had earlier 
been confirmed with the use of a second hot-wire sensor. A total of seven azimuthal 
positions over a 180" span were sampled. 

The velocity sensor and speaker array were moved by stepper motors under 
computer control. The accuracy in positioning the velocity sensor in the x- and r- 
directions was 10 and 5 pm respectively. The accuracy in the y-direction for the 
speaker array was 0.5". 

The unsteady pressure at the lip of the jet was obtained from a B&K Type 2209 
precision sound level meter which was connected to a pressure port through a short 
tubulation. The system amplitude response was flat to 4 kHz. As with Corke et al. 
(1991), only a single pressure port was used. This was located at the same physical 
azimuthal position as the velocity sensor. 

The velocity sensor was a single hot wire operating in constant-temperature mode. 
The probe body was the same as that of Corke et al. (1991), which was designed to 
minimize any upstream influence caused by probe feedback. 

The voltage time series from the sound level meter and constant-temperature 
anemometer were d.c. biased as necessary and amplified through an analog 
programmable gain circuit to minimize quantization error prior to being acquired by 
a digital computer. Also acquired for reference was the voltage series used to drive 
one of the speakers. The digital sampling rate was 16250 Hz. This allowed us to 
resolve frequencies up to three times that of the highest seeded mode. For each 
spatial sample, 32770 contiguous time samples were acquired for each of the three 
voltage inputs. This corresponded to 2.02 s of data or approximately 5000 cycles of 
the highest input frequency. Each of these formed a record of data. A total of 16 
records for each spatial location were acquired. 

Post processing consisted of digitally calibrating the pressure and velocity data 
series. For the velocity data, a fourth-order polynomial was used to linearize the 
anemometer output. Other processing generally involved calculating the mean and 
r.m.s. of the velocity fluctuations. Mode amplitudes and phase angles were 
determined from cross-spectral estimates using a 1024 point discrete Complex Fast 
Fourier Transform. Anti-alias filtering was done digitally prior to spectral 
calculations. To improve the convergence of the spectral estimates, a time-domain 
Hanning smoothing function was also used. The total of 512 record averages was 
found to be more than adequate to average out random variations in the spectra. The 
amplitudes corresponding to spectral peaks were converted to r.m.s. by taking the 
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Case Re,, fi m p’/q(?40) O,(mm) 

A 70000 2500 0 0.016 0.095 

B 70000 1250 +1 0.037 0.102 
C 70000 2500 f l  0.016 0.093 

TABLE 1. Case study conditions 

1250 f 1  0.037 

area under the peaks and normalizing them by the frequency bandwidth. For any 
mode, the local phase was the phase angle from the complex cross-spectra computed 
using velocity series at a given spatial location and the simultaneously sampled 
pressure a t  the jet lip. The streamwise spacing of data samples was close enough to  
guarantee at least two points within one wavelength of the modes of interest. This 
ensured that we could properly account for the 27~ phase jumps which occur in the 
circular phase from one mode cycle to the next. 

2.1. Forcing conditions 
Given a fixed Reynolds number (Re, = 70000), three initial disturbance conditions 
were examined. These are denoted as Cases A, B and C in table 1.  Case B (the base 
case) consisted of introducing only helical mode pairs (m = f 1) at a frequency which 
was approximately one-half that of the most amplified initial mode (helical or 
axisymmetric). As such it is only weakly amplified. The initial amplitude of this 
mode was set to be low enough so that it would not interact or dominate over the 
other natural (stochastically forced) modes in the jet. 

Case B was meant to be a reference for Case A in which we introduced, along with 
the helical mode pairs, an additional axisymmetric mode a t  the harmonic frequency 
of the helical mode. The choice of the axisymmetric mode frequency was expected to 
lead to  the enhanced (resonant) growth of the subharmonic helical mode. The initial 
amplitude of the axisymmetric mode was set to be as low as possible but still be 
sufficient to lead to resonance. 

In  keeping with Corke et al. (1991), we defined the forcing amplitude in terms of 
the r.m.s. pressure fluctuations a t  the lip of the jet, p’. These values are shown in 
table 1 for the different cases, normalized by the dynamic pressure in the jet core, q. 
The unsteady pressure was measured using the sound level meter while connected to 
a pressure port without any flow through the jet. In  the case of the helical mode it 
represents the maximum value. 

Also compiled in table 1 are the values of the initial momentum thickness, Oi, for 
the different cases. The initial value was estimated by linearly extrapolating the 
value a t  the lip from the measured values a t  the first three or four x-positions. As can 
be seen in figure 11 of Corke et aE. (1991) (and figure 20 here), in the initial region up 
t o  approximately x / D  = 0.15, the growth in the momentum thickness is slow and 
well approximated by a linear function. The deviation in the estimate of the initial 
momentum thickness is small among the cases here, indicating a relative lack of 
influence of the different forcing conditions. As such, we believe the differences 
between them is a measure of the uncertainty. Compared to the values of Corke et al. 
(1991), our Bi are approximately 20 YO lower (this is also based on linear extrapolation 
to the lip of their values). We believe that this difference might be due to our not 
including mean profile values of less than O . l O / L $ .  The reason for excluding these was 
the general difficulty of getting stable averages at these lower velocities owing to the 
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high static sensitivity of constant-temperature hot wire on this regime. We believe 
that our current approach is more accurate for comparing the effect of forcing on the 
momentum thickness between cases at the same Reynolds number. However, we will 
continue to use the values (20% higher) of the momentum thickness from Corke et 
al. (1991) for defining the Strouhal numbers of the different modes. 

Finally, the conditions of Case C are the counterpart to the forced case in Corke et 
al. (1991). The basic difference between them is that in our experiment the forced 
mode is m = f 1 helical wave pairs, compared to the m = 0 wave used in the previous 
work. The frequency of the forced modes is the same. In  the previous work, forcing 
an m = 0 mode a t  this frequency led to numerous nonlinear sum and difference 
interactions (see for example figure 39 of Corke et al. 1991). It was intended that 
comparing the results with different initial mode types would help us to understand 
the origin of these interactions, which appear to be special in this case. 

3. Results 
As partial documentation of the basic flow, normalized mean velocity profiles at 

different x-positions for Case B are shown in figure 3. We believe that the selection 
of the forcing frequency in this case and low forcing amplitude leave the basic flow 
essentially unchanged compared t o  a natural (unforced) jet. To demonstrate this, we 
have included in figure 3 (a), the mean profile from Drubka (1981) at a comparable 
Reynolds number (Re, = 62500, x / D  = 0.17) in the same jet. His was the case of a 
natural jet, without our added azimuthal speaker array a t  the nozzle exit. The 
comparison to the present data is very good. Within the linear growth region (for 
example up to x / D  = 0.2 in Case B) the mean velocity profiles in figure 3 are 
representative of the three cases (A-C) : all showed the same profile shape and degree 
of self-similarity. Beyond energy saturation, they also show a similar change in the 
mean profile, such as seen in figure 3(b). 

3.1. Thin-shear-layer assumption 
An important part of the recent studies by Cohen & Wygnanski (1987a) and 
Ahmadi-Moghadam (1986) was the quasi-two-dimensionality, from a linear stability 
standpoint, of the exit shear layer. Cohen & Wygnanski indicated that when the jet 
diameter is large compared to the shear-layer thickness, an increasing number of 
azimuthal modes become unstable. Their results specifically showed that for a ratio 
of the half-radius of the jet column to shear-layer momentum thickness (rilei) equal 
to 77, the amplification rates of modes with azimuthal wavenumbers from 1 to 6 were 
essentially indistinguishable. Their analysis was derived using a modified hyperbolic 
tangent mean profile with fitting coefficients determined from their experiment. A 
possibly more general result for a Blasius shear-layer profile by Ahmadi-Moghadam 
(1986) shows virtually no difference in amplification characteristics for azimuthal 
wavenumbers up to m = 4 for rt8,  = 100. 

Using an average value from table 1 for 8,, for our jet ri/Oi = 263. Therefore this 
jet far exceeds the criterion for a thin shear layer, and one should expect a close 
correspondence between the linear stability characteristics of the axisymmetric 
(m = 0) and m = & 1 helical modes, with the same frequency. 

To test the validity of this assumption, the initial growth region of the forced 
axisymmetric mode in Case A and the forced helical mode in Case C were compared. 
Both these modes are a t  the same frequency. A general comparison can be made 
between the contours of constant eigenfunction modulus, given as log,, u’( f ) /q ,  for 

I1 PLM 249 
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FIGURE 3. Mean velocity distribution across shear layer at different downstream locations in Case 
B, with comparison to hyperbolic tangent profile (-) and, in (a) ,  natural (unforced) jet of 
Drubka (1981). 

both modes in the ( r ,  x)-plane seen in figure 4. In order to generate the contours, the 
values at discrete ( r ,  2)-locations were first spline-fitted in both directions. A very low 
damping coefficient was used in order to not alter the actual data values. The 
constant-level contours were generated from these spline function fits. For the helical 
mode (figure 4 b ) ,  the data are at the y-position where the amplitude is a maximum. 
Even beyond the linear growth range (x/D = 0.2) the fluctuation distributions are 
very similar. 

The eigenfunction modulus and phase distributions in the radial direction for these 
two modes are shown in figure 5, for different 2-locations within the linear region. For 
the moduli, the values have been normalized by the radially integrated eigenfunction, 

u'( f )  dr. 

Again, the eigenfunctions for the two modes are nearly identical. The streamwise 
development of normalized amplitude, ulnt/q, for the two modes is shown in figure 
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FIGURE 4. Contours of constant eigenfunction modulus for (a)  Case A, m = 0, and ( b )  Case B, 

m = f 1 modes, both seeded a t  2500 Hz. Levels correspond to log,, (u ’ /q ) .  

6. In  each case, the different symbols correspond to the amplitude growth a t  different 
azimuthal positions. For the m = f 1 mode of Case C, the initial amplitude varies 
with y according to the forcing level distribution previously shown in figure 2. This 
accounts for the linear shift between growth curves at different y-positions in that 
case. However, the amplification rate is independent of the y-position. 

A fit of the exponential growth of both modes in the two cases gave the same 
dimensionless amplification rate, - ai Oi = 0.068. The line drawn in figure 6 
corresponds to that amplification rate. The linear theory prediction from Monkewitz 
& Huerre (1982) for a hyperbolic tangent mean profile is -aiOi = 0.073. Our mean 
profiles fall between hyperbolic tangent and Blasius. For a Blasius profile, Ahmadi- 
Moghadam (1986) gives a value of 0,063. 

A linear fit of the streamwise phase change in the x-direction gave values for the 
phase velocities of Cr/q = 0.57 for the m = 0 mode, and 0.53 for the m = f 1 mode. 
The difference between them is within the accuracy of our measurements and linear 
fit. The value from Monkewitz & Huerre is 0.63. 
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Figure 7 is included to demonstrate that although these two modes have the same 
radial and streamwise eigenfunction development in accordance with quasi-two- 
dimensional stability theory, their azimuthal distributions are different and follow 
their mode type. Shown in this figure is the azimuthal distribution of the mode phase, 
$ , f / x ,  at each x-position. The subscript uf indicates that the phase was measured 
between the streamwise velocity fluctuation and a fixed reference time series 
corresponding to the forcing signal to one of the speakers. For the m = 0 mode, we 
observe the expected constant phase in the azimuthal direction. Contrasting with 
this, the m = f 1 mode shows the expected 7c phase shift across the azimuthal 
position of the amplitude minimum ( y  = 90" documented in figure 6 b ) .  

Based on these comparisons, the thin-shear-layer assumption is clearly validated 
for this jet. Therefore, the linear stability characteristics of the other forced or 
interacted modes can be determined on the basis of quasi-two-dimensional instability 
theory, without concern for their azimuthal wavenumber. In our case this should be 
valid for at least m = 2 4 .  

3.2. Case B 
Representative power spectra of pressure fluctuations a t  the lip of the jet and 
velocity fluctuations downstream near the end of the linear region (x/D = 0.217) 
within the shear layer (at the radial location where U / q  = 0.6) are presented for Case 
B in figure 8. The spectra are shown for two azimuthal positions corresponding to 
the helical-mode-pair amplitude maximum (y  = 0") and minimum (y  = 90'). The 
frequency of the forced mode a t  1250 Hz is clearly distinguishable and denoted in the 
figure as ff. 

We have also shown frequencies of unstable modes which have been identified in 
past experiments (Drubka 1981, see also Drubka, Reisenthel & Nagib 1989; Corke et 
al. 1991 ; Kusek et al. 1990) in this jet under natural conditions. These correspond to 
the fundamental axisymmetric mode fo (2040 Hz), its subharmonic ifo (1020 Hz), 
and the fundamental helical mode fi (2550 H z ) .  Kusek et al. (1990, figure 6 )  have 
documented a constant St, scaling for these modes in this jet for 22500 < Re, < 
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PICURE 8. Spectra in Case B at two azimuthal locations, corresponding to helical-mode amplitude 
maximum and minimum for (a) velocity fluctuations in the shear layer a t  x /D  = 0.217, and ( b )  
pressure fluctuations at the exit lip. -, y = 0" (antinode); ----, y = 90" (node). 

90000. The values of X t ,  are 0.0144, 0.0180 and 0.0076 forf,,f, and go respectively. 
The fundamental modes fall on either side of the theoretical most-amplified St, = 

0.017 determined by Michalke (1971). The mode at  St, = 0.0180 was determined by 
Drubka (see Drubka et al. 1989, figure 10) to be an m = -t 1 helical mode, based on 
measurements using a velocity sensor a t  a fixed position in the shear layer and a 
pressure sensor monitoring the simultaneous unsteady pressure at the different 
azimuthal positions on the exit lip. These showed K phase changes in the azimuthal 
direction associated with the rn = & 1 helical mode. 

1 modes appear in the natural jet 
at different frequencies, since according to the thin-shear-layer approximation which 
we documented to be valid in this jet, they have identical linear theory 
characteristics. The explanation, we believe, is due to nonlinear influences further 
downstream which are transmitted back t o  the lip of the jet through pressure 
feedback. 

The broad peak in the pressure spectrum and the accompanying small peak in the 
velocity spectrum at 227 Hz are believed to be due to the instability of the potential 
core (so-called 'column instability') which scales with the jet diameter (0). In  the 
pressure spectrum a t  the lip of the jet this represents the largest amplitude, although 
the amplitude maximum in the velocity fluctuations for the column mode occurs 
further downstream at x /D  = 3 to 4. The velocity measurements in figure 8 are at 
x/D = 0.217. Energy at the column-mode frequency occurs at  the lip of the jet 

One might question why the m = 0 and m = 
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FIGURE 10. Streamwise development of phase for f,, (0) and ff (0) modes in Case B. 

because of pressure feedback. In this way a shear-layer mode at the column-mode 
frequency could be self-forced, although it is far from the most linearly amplified 
frequency for the thin shear layer, and is generally overwhelmed by more amplified 
modes such as those denoted in this figure. 

The streamwise growth in amplitude of the forced mode (ff) at different azimuthal 
positions is shown in figure 9. The different initial amplitude levels of this mode with 
azimuthal position, with a minimum at y = 90°, correspond to the m = & i azimuthal 
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wavenumber. Within the linear growth region, a constant spatial amplification rate 
exists, regardless of the azimuthal position. The value measured here was -ai Oi = 
0.036. The theoretical value given by Monkewitz & Huerre (1982) is 0.040. Growth 
curves for the natural fundamental modes in this case (Kusek 1990) showed a similar 
good comparison to two-dimensional linear theory estimates. 

for the forced 
mode is shown in figure 10. These are again taken at the radial position where 
U / q  = 0.6. The 'up' subscript indicates that the phase was measured between the 
streamwise velocity fluctuations at the different x / D  positions and simultaneously 
sampled pressure fluctuations a t  the exit lip. Also shown for reference is the phase 
development for the natural axisymmetric mode ( f , , ) .  The slope of these lines 
corresponds to the streamwise wavenumber ar. The phase velocity is calculated from 
this as C, = 2nf/ar. Within the linear range, the data document a constant phase 
velocity for both these modes. For the natural axisymmetric mode, its value is 
C,./q = 0.57. For the forced helical mode, Cr/q = 0.93. Both correspond well to the 
linear theory values of 0.65 and 0.85 respectively. 

We conclude from figures 9 and 10, and additional evidence compiled by Kusek 
(1990)) that the weakly amplified helical mode that we seeded in this case acts as a 
passive extra mode which imparts only minor changes in the early evolution of the 

The corresponding downstream development of the phase, 
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forced at  1250 Hz. 

jet. Thus, it makes a suitable base case for comparison to  the condition with an added 
axisymmetric mode a t  2500 Hz (Case A), designed to lead to the resonant growth of 
the subharmonic helical mode. 

3.3. Case A 
To promote the enhanced growth of the 1250 Hz, m = f 1 mode of Case B it was 
superposed with an axisymmetric mode at its harmonic frequency. The outcome of 
this constitutes the results of Case A. The immediate effect of combining these modes 
is seen in the velocity and pressure auto-spectra in figure 11.  I n  contrast to the 
spectra of Case B (figure 8),  the natural shear-layer instabilities are now dominated 
by the two input modes and other modes derived from these. Note that the extent 
of the frequency axis has been increased in this figure over that for Case B in order 
to show the energy in higher-frequency modes produced in this case. 

Figure 11 shows the spectral peaks corresponding to the two forced modes, the 
m = k 1 helical mode,fm, and m = 0 mode,ff,, as well as two modes which emerge as 
a result of the forcing, iffa and $ffa. These spectra peaks are seen to be dominant in 
both the velocity fluctuations in the shear layer, and pressure fluctuations a t  the lip 
of the jet. For the velocity spectra, the spatial location is the same as for the spectra 
of Case B in figure 8. Also as before, the two line types correspond to two azimuthal 
positions where the amplitude of the m = k 1 mode is a maximum and a minimum 
(y  = 0" and go", such as seen in figure 2). 

The streamwise growth in amplitude of the forced helical mode (ffh) a t  different 
azimuthal positions is shown in figure 12. This can be contrasted to its counterpart 
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for Case B in figure 9. In particular, we observe that the spatial growth no longer falls 
on a straight line (exponential growth, e-.iz). 

The streamwise development in phase for this mode as well as the forced 
axisymmetric mode (ff,) are shown in figure 13. For both these modes, the phase 
points fall on a straight line for z / D  < 0.25. The slope of these lines corresponds to 
their streamwise wavenumber, ar, from which we derive the phase speed of these 
modes, C, = 27cf/a,. For the axisymmetric mode, the dimensionless phase speed is 
constant and has a value C , / q  = 0.57, which agrees well with linear theory. 

For the conditions of Case B, the forced helical mode had a phase speed of 
C , / q  = 0.93 which agreed with linear theory. The phase development corresponding 
to that phase speed for that mode is shown as the dashed line in figure 13. In  Case A, 
with the addition of the harmonic axisymmetric mode, the phase speed of the helical 
mode is substantially lower and matches that of the axisymmetric mode, satisfying 
the conditions for a resonant energy exchange between them. 

In the previous work by Corke et al. (1991), the resonant growth of a subharmonic 
axisymmetric mode was marked by a change in the phase velocity downstream of the 
first 2-measurement station. This was seen as a break in the slope of the linear phase 
development. Corresponding to this break was an increase in the amplification rate 
of the subharmonic mode. The streamwise growth of that mode was then represented 
as two exponential (linear) growth regions, with the upstream portion corresponding 
to the linear theory value and the downstream portion having a spatial growth 
greater than predicted from linear theory. An example of this is in figure 16 of Corke 
et al. (1991). 

For this case of the subharmonic helical mode, we observe a constant phase speed, 
without a break, throughout the measured region. As a result, we do not feel justified 
as before in representing the growth in amplitude of this mode as two exponential 
regions. Since these modes are phase locked by the first measurement station, where 
their amplitudes are relatively low, we consider an amplitude evolution model based 
on a weakly nonlinear three-wave resonance. The three waves in this case are the 
fundamental axisymmetric mode and subharmonic helical mode pairs. If a3 and al, 
represent the respective dimensionless amplitudes of these modes, then the amplitude 
of either helical mode is coupled to that of the axisymmetric mode as 

da,/dt = - C T ~  a2 + ba: a3 + O(a3), 
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where t is time, a2 is the temporal amplification rate (a,) of mode 2, b is a coupling 
coefficient, and * represents the complex conjugate. The origin and a discussion of 
three-wave resonance leading to this equation is presented by Craik (1985). For the 
helical modes, 

ul , ,  = A ,  exp [ i (c~~+ic~,) t+imy] 

so that a: = a2. In addition, because the phase speeds of the three modes are equal, 
t can be replaced by z/C,. Therefore to second order, 

where a2 is the linear spatial amplification rate of mode 2 (ai). The amplitude A ,  is 
that of the axisymmetric mode, which was found to follow linear theory, as shown 
in figure 6 (b). 

Therefore, 

1 b 
dA2/A2 = -aiz +-A,, exp ( -ai,x) dx. [ cr 

Integrating this equation gives a relation for the amplitude of the helical mode in 
terms of its linear amplification and growth of the axisymmetric mode, namely 

A, =Azoexp [-aizx+b'exp (-ai3x)], 

where b' = bA,,/C, ai3, and A,, and A,o are reference initial amplitudes for the helical 
and axisymmetric modes, respectively. 

Craik (1985) points out that when the amplitudes of the two waves (helical modes 
in this case) are small so that there is no back interaction by them on the other wave 
(the fundamental m = 0 mode), then the weakly nonlinear interaction is also usually 
described as 'parametric resonance'. That this condition is met is evident in figures 
6 (a)  and 13, where we observe the streamwise development in amplitude and phase 
of the fundamental m = 0 mode to follow the linear theory development regardless 
of the presence of the subharmonic helical modes. 

We have determined a value for b' from the amplitude data of the helical mode a t  
y = go", where the initial amplitude is lowest and the neglected O(a3) terms should 
be least significant. The values for a,, and ai3 were the measured values from figures 
9 and 6 (a)  respectively. This yielded b' = 3.76 x lop2 .+ 2.0 x lop3, or b/C, ai, = 19.41. 
Physically we look on this term as a dimensionless coupling coefficient. 

Using this value and AZo as the amplitude of the most-upstream measured data 
point for y = go", the amplitude equation is shown as the solid line through the filled 
points in figure 12. Changing only the value for Az0,  the same equation is drawn for 
the points at  y = 0". For both curves, the dashed line corresponds to the growth of 
the helical mode based on linear theory. 

This evolution equation is observed to represent the growth of the helical mode 
well in this case, irrespective of the azimuthal position. The equation is valid as long 
as the neglected terms are insignificant. As the amplitudes grow larger, their 
influence leads to the amplitude saturation that is observed past x / D  = 0.25. We 
have made no attempt to extend the evolution equation to include this region. 

Although our primary interest in this case is in the interaction between the 
fundamental axisymmetric and subharmonic helical modes, we can make some 
comments on the other dominant modes which appear in the spectrum in figure 11,  
namely ufa = iffh and iffa. 

There is possibly more than one scenario to explain the origin of these modes. The 
difficulty in tracing these is due to pressure feedback by which a mode which might 
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only naturally develop downstream can appear to originate at the lip of the jet. 
Corke et al. (1991) considered feedback an important element in subharmonic 
resonance of axisymmetric modes. The fact that the iffa and $ffa modes are felt at  the 
lip of the jet is evident by their appearance in the spectra of pressure fluctuations 
measured there. 

As a result of subharmonic resonance in this case, the helical mode, ffh grows at an 
enhanced rate (according to the double-exponential evolution equation previously 
presented) and the shear layer rapidly thickens. However, because this mode has an 
m = 1 azimuthal wavenumber, the degree to which the shear layer thickens 
depends on the azimuthal location. I n  particular, the maximum spreading occurs at 
the azimuthal locations of the helical mode amplitude maxima ( y  = 0" and 180"). 
This will be further discussed in $3.5. Its  relevance to this discussion is to 
downstream effects, and the origin of additional modes in this case. 

With the thickening of the shear layer downstream, according to linear theory the 
shear layer becomes more unstable to  lower frequencies. Of all the possible lower- 
frequency modes, the subharmonic of the input helical mode would be favoured 
because it could also interact most efficiently in a weakly nonlinear way. In  this 
scenario, the process for the growth of fluctuations a t  iffh = iffa would be due to a 
secondary subharmonic resonance, where the primary mode is the helical mode atf,,, 
and the basic flow is the azimuthally varying mean flow produced by the initial 
growth of this mode. 

Such a growth of successive subharmonics for axisymmetric modes has been 
observed in shear layers in jets (see for example the review by Ho & Huerre 1984), 
where its effect leads to successive pairings of vortices downstream. I n  this scenario, 
we might also expect to observe vortex pairing of helical modes. For m = rt 1,  this 
would be most evident at the azimuthal locations of the helical-mode amplitude 
maxima. This in fact was brought out in our earlier work (Kusek, Corke & Reisenthel 
1989). In  particular, when we introduced m = f 1 helical modes near their most- 
amplified frequency, and with sufficient initial amplitude so that they would 
dominate over other instability modes, flow visualization documented that 
downstream the streamwise wavelength of the helical mode would double compared 
to the initial value. This came about as a disconnection of the helical modes near the 
azimuthal locations of amplitude minima, and vortex pairing a t  locations of 
amplitude maxima. 

A sample from that early work is shown in figure 14(a). I n  this case Re, = 20000, 
and the flow direction is from left to right. The smoke was introduced into the shear 
layer as a circular sheet all around the circumference of the jet exit. It was 
illuminated with a short-duration strobe lamp. Figures 14 (a )  and 14 ( b )  correspond 
to the azimuthal locations of the amplitude maxima of the helical mode. From this 
viewpoint the staggered formation of vortices is indicative of the rn = & 1 helical 
mode. Pairing appears to occur on the top row of vortices, two wavelengths from the 
left edge of the photograph. Downstream of this point we observe a doubling of the 
initial wavelength. 

1 helical and fundamental 
m = 0 modes, flow visualization also provides evidence of vortex pairing further 
downstream. A sample is shown in figure 14 ( b ) .  I n  this case Re,, = 4000 ; however, the 
frequencies of the two input modes were reduced so that their Strouhal numbers, 
St, = f6/z/ij remained the same as for Case A. The method for performing the flow 
visualization and the viewpoint are the same as for figure 14(a). I n  this case we use 
arrows to mark the approximate locations of the centres of the top row of vortices. 

In  the present case with combined subharmonic m = 
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FIUURE 14. Smoke-wire flow visualization of the jet shear layer for different conditions with 
m = f 1 helical-mode input that demonstrate helical-mode vortex pairing. (a)  Re, = 20000 with a 
helical-mode input a t  its most unstable frequency (from Kusek et al. 1989). ( b )  Re, = 4000 with 
m = 0 mode input at most-amplified frequency and m = f 1 mode a t  its subharmonic frequency. 

The first vortex rollup is expected to closely correspond to the location of energy 
saturation of the subharmonic helical mode. The distance between the first two 
vortices gives the initial streamwise wavelength of the helical mode. Further 
downstream, the elongated structure double arrows and increased streamwise 
wavelength suggest that vortex pairing may also be taking place in this case. 

We note that in this process, the mode that results after pairing is also helical, with 
the same ( &  1) azimuthal wavenumber. This observation agrees with the spectra in 
figure 11 which show an azimuthal variation in amplitude a t  4Jfa which is consistent 
with an m = f 1 mode. 

Although pairing would take place downstream of our last measurement station, 
its effect could be felt back at the lip of the jet due to pressure feedback. Pressure 
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FIGURE 15. Streamwise growth in amplitude of $ffa = 1875 Hz mode in Case A. 

feedback from the site of the first vortex pairing of axisymmetric modes was 
previously confirmed by Corke et al. (1991). We expect the process to be similar here. 
In  the initial region, the mode at gfa would be forced by feedback a t  the lip and grow 
according to  linear theory. At that location where the shear layer is thin, it would be 
relatively weakly amplified. However, its initial amplitude is not insignificant and its 
presence, along with the two input modes, is capable of producing through sum and 
difference interactions the other modes observed in the spectrum in figure 1 1 ,  

If this scenario is correct, the vfa mode could be produced by either ffa-iffa or 
ffh +gfa. For the former, the azimuthal wavenumber of the mode produced would be 
& 1. For the latter, it would be +2. The streamwise growth in amplitude of the iffa 
mode a t  different azimuthal positions is shown in figure 15. At any x / D  location, the 
variation in amplitude with azimuthal position confirms m = k 1 for this mode. 

Figure 15 along with the phase development of gfa in figure 13 document the initial 
evolution of this mode. As a result of the difference interaction (ffa-iffa), this mode 
is essentially forced at the lip of the jet. From the exit lip to approximately x / D  = 
0.17, this mode grows according to linear theory. This is confirmed by both its growth 
rate and phase velocity determined from these two figures. Past this x-position, we 
observe an abrupt decrease in the phase speed of this mode, accompanied by a sharp 
decrease in its amplification rate. Because of the break in the phase development, we 
have represented the amplitude development as two linear growth regions. Past 
x / D  = 0.25, the amplitude in this mode saturates and decays. 

Based on these observations it would appear that the ufa mode is produced at  the 
lip of the jet. In  the initial thin shear layer it is relatively highly amplified. However, 
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FIGURE 16. Spectra in Case C a t  two azimuthal locations corresponding to  helical-mode amplitude 
maximum and minimum for (a)  velocity fluctuations in the shear layer a t  x / D  = 0.217 and ( b )  
pressure fluctuations a t  the exit lip. -, y = 0 (antinode) ; ----, y = 90" (node). 

the secondary growth of the subharmonic helical mode leads to a rapid growth of the 
shear layer. From a linear stability standpoint, as the shear layer thickens, the most- 
amplified frequencies shift towards lower values. It appears that in this process the 
iff, mode becomes less amplified downstream and behaves more or less only as a 
passive additive mode. 

3.4. Case C 
As pointed out in $2.1, the conditions of this case were meant to produce a 
counterpart to  the forced case a t  Re, = 70000 in Corke et al. (1991), whereby the 
same frequency was used, but an m = f 1 helical mode was input rather than an 
m = 0 mode. The frequency of the input mode is near the most-amplified one with 
St,=0.018, where 0.017 is most amplified according to linear theory. As was 
demonstrated in $3.1, because the initial shear layer is thin the differences between 
the linear stability characteristics of the rn = 0 and m = f 1 modes are insignificant. 

The results of this input condition were identical with those of Corke et al. (1991), 
namely the appearance of hth-based combinations of the forced mode (jf). With this, 
instead of an exact subharmonic, there appeared near-subharmonic values of hff and 
&ff. Velocity spectra a t  x/D = 0.217 and pressure spectra a t  the lip of the jet showing 
this are shown in figure 16. As before, the solid curve corresponds to an azimuthal 
location of the input helical-mode amplitude maximum, and the dashed curve to the 
location of an amplitude minimum. At the latter azimuthal position, we note the 
appearance of a peak in the spectrum at the frequency of the natural (unforced) 
axisymmetric mode ( f o  = 2040 Hz). This peak appears to be completely suppressed 
a t  the position of the helical-mode amplitude maximum. 

In  order to understand the origin of the modes in this case, we have concentrated 
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FIGURE 18. Streamwise development of phase infi = 2500 Hz (V), Iff; = 227 Hz (O), (O), 

Aff = 1364 Hz modes in Case C. 

on the following frequencies in detail: ff, &ff, &ff, &ff and f o .  The streamwise growth 
in amplitude forf,, is presented in figure 6 ( b ) .  The phase speed was determined from 
figure 18 (downward triangle) to have the constant value of Cr/q = 0.53. These 
confirmed that this mode was developing according to linear theory. Similar 
measurements (not presented) showed that the mode at f o  also developed according 
to linear theory with a constant amplification rate of --ai Oi = 0.058 and a constant 
phase speed of Cr/q = 0.57. Both these matched the values measured for f o  under the 
conditions of Case B, for example in figure 10. 

The streamwise development in amplitude and phase of the &ff, &ff and ff modes 
is presented in figures 17 and 18. We consider first the &ff mode, which Corke et al. 
(1991) had concluded resulted from the same subharmonic resonance mechanism 
that leads to pairing in natural jet shear layers, such as shown here for the enhanced 
growth of the subharmonic helical mode in Case A. Our conclusion is the same, based 
on the similarities between the streamwise development of the &ff mode here and the 
subharmonic mode (ffh) of Case A. 

The first similarity which leads us to this conclusion is that this mode has a 
constant phase speed throughout the measurement region which is significantly 
lower than the linear theory value and close to that of the near-fundamental mode. 
The streamwise wavenumber, a,, was determined from the slope of the linear curve 
fit through the measured phase values (square symbols) in figure 18. From this, the 
dimensionless phase speed was calculated to be C , / q  = 0.60. The linear theory value 
is 0.78. 

As a result of the constant and nearly matched phase speeds of the ff and Aff 
modes, we expect to find an enhanced growth of &ff through a weakly nonlinear 
interaction similar to that in Case A. A similar near-subharmonic/fundamental 
resonance exists in boundary layers, which is referred to as ‘ combination resonance ’ 
by Santos & Herbert (1986, see also Herbert 1988). Also for boundary layers, Corke 
(1990) referred to this as ‘detuned resonance’. We believe that the enhanced growth 
of the &jf mode in this case is another example of this. In all these cases, the resonant 
interaction does not require a matching of frequencies but rather a close (but not 
necessarily exact) matching of phase speeds. 

The downstream growth in amplitude of the Aff mode for different azimuthal 
positions is shown in figure 17(a). The change in the initial amplitude level with 
azimuthal position confirms that m = f 1 for this mode. As with the subharmonic 
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mode in Case A, we have applied the amplitude evolution equation to the data and 
determined the coefficient b'. As previously done, the value of b' was determined for 
only one y-position and then compared to the amplitude data at the other y- 
positions. The data we chose to use was at  y = 150" (flagged-square symbols). These 
were selected because the initial points more closely followed linear theory. The 
linear growth with -aiBi = 0.033 is shown as the dashed line in the figure. 

Based on this data set, 6' = bA30/Crai,  was 8.01 x 10P3+2.7 x loP3. Using the 
initial amplitude for the fundamental mode at  y = 150°, the dimensionless coupling 
coefficient, b/C, ai3, was 5.55f 1.9. The amplitude equation using this coefficient is 
shown as the solid line through the y = 150" data points. 

One of the basic differences between this case and Case A is that here the 
fundamental mode is helical with m = k 1. Therefore the initial amplitude, A30, varies 
with the azimuthal position (such as in figure 2). We apply the evolution equation, 
changing only the initial amplitudes, to obtain the solid curves appropriate to y = 0' 
(open circles) and 90" (filled circles). 

Examining the results, we find that the amplitude equation represents the 
enhanced growth of the Aft mode reasonably well, especially near the azimuthal 
positions of the &if amplitude maxima. The impact of the y-variation of the initial 
amplitude of the fundamental mode (ff) is to produce larger growth rates near the 
azimuthal positions of initial amplitude maxima (Oo and 180") than at the minima 
(90"). This is clearly evident from the data, by simply translating downward the 
curve at  y = 0 over the data points for y = 90". The amplitude model captures this 
behaviour well. 

We find in this case that the coupling coefficient, b/C, ai,, was approximately 3.5 
times smaller than the value determined in Case A. This seems consistent with the 
idea that the energy exchange is not as efficient in this case owing to the less perfect 
matching of phase speeds between modes. However, in general it  appears that the 
physical process is the same and accounts for the rapid growth of the Aff mode. 

Corke et aE. (1991) had observed the +Jf mode to develop downstream according to 
linear theory. In an initial region up to x /D  = 0.2, we find a similar result. This can 
be seen in terms of the amplitude development of this mode in figure 17(b). The 
straight line corresponds to the amplification rate of - ai 6, = 0.040 which compares 
to the linear theory value of 0.047. Within this region for this mode, the linear 
coherence between the pressure fluctuations a t  the lip of the jet and velocity 
fluctuations downstream in the shear layer always fell below 0.5, which is our 
threshold for accurate phase measurements. The same type of insignificant level of 
linear coherence was also found for this frequency by Corke et al. (1991). As a result, 
we could not determine the phase speed of this mode in this region. 

Past x /D  = 0.2, we observed a sharp increase in the amplification rate of the &ff 
mode. Coincident with this was an increase in the linear coherence above our 
threshold value. In  this region we were then able to determine the phase development 
of this mode. The values are shown in figure 18 (upward triangles). The phase speed 
in this region corresponding to these values is constant and equal to C , / q  = 0.53. 
This phase speed is, then, considerably slower than its linear theory value of 0.75, 
and matches at  this point the value for the input mode ff. 

It appears that the streamwise development of the &ff mode is not unlike that of 
the vf mode in Case A ;  that is, it  starts as an essentially passive linear additive mode. 
Only further downstream, with the growth in amplitude of the input, ff, and Aft 
modes, and the growth in the shear-layer thickness, it  is able to couple with ff. A t  
that point it achieves some enhanced growth. 



Resonance in jets with controlled helical-mode input 331 

The downstream development of the kff mode is shown in terms of amplitude in 
figure 17 ( c ) ,  and phase as the circular symbols in figure 18. Regarding the phase, the 
phase speed is constant, with a value of Cr /q  = 0.91. This compares to the linear 
theory value of 0.97. For the amplitude, the variation in the initial level with 
azimuthal position confirms that the & ff mode has m = f 1. The linear theory value 
for the growth in amplitude is shown as the dashed line. At the y = 90" position, the 
initial growth is close to linear. However, further downstream and for all the other 
y-positions, an enhanced amplification similar to the ff mode is observed. Because 
of this similarity, we applied the same amplitude model and determined a coupling 
coefficient between the kff and ff modes, utilizing the amplitude values for y = 90". 
The resulting amplitude curve is shown as the solid line through the filled-circular 
symbols. For this, the dimensionless coupling coefficient was found to be 81.5 f 7.5. 
The amplitude model represented the growth a t  this y-location quite well. We 
applied this same function to the y = 0" position while only adjusting for the 
azimuthal change in the initial amplitudes of the two modes. This is shown as the 
solid line through the open-circular symbols. In this case, the amplitude equation 
overpredicts the growth of this mode. 

For the &ff mode, we had tried using the linearly growing &ff mode as the 
fundamental in the weakly nonlinear model. However, this was found to greatly 
under predict the growth of &ff. Only the use of the more-amplified linear mode (ff) 
could account for the larger growth in amplitude of Aff. Also, strictly speaking, one 
should include the amplitude development of other modes such as ff and ff which 
can sum or difference with ff to produce &ff. However, figure 16 showed that the 
amplitudes of these frequency sidebands to the fundamental mode are insignificant 
(nearly 30 dB lower than ff) so that their contributions to the growth of kff must be 
minimal. 

What is the origin of the hff based modes in Case C Z It is not due to the method 
by which we introduced the disturbances, since the same result occurred for Corke 
et al. (1991) when using far-field sound. 

In  an independent study in the same facility, Reisenthel et al. (1991) had 
investigated the characteristics of the instability mode which scales with the jet exit 
diameter (the so-called 'jet column mode'). Because this mode and the shear-layer 
modes have characteristic scales, D and 0 respectively, and because D / 0  is generally 
of the order of lo2 (approximately 500 in our case), the instability frequencies 
associated with these differ considerably. In  a natural jet, the column mode does not 
generally have a significant role in the initial development of the flow. However, 
conditions such as Drubka's Re, = 42000 jet (see Drubka et al. 1989) indicate that 
it can, when an integer number of successive subharmonic frequency reductions of 
the initial shear-layer mode leads to a matching downstream to the column-mode 
frequency. Under those conditions, the pressure fluctuations corresponding to the 
first subharmonic were extra strongly felt a t  the lip of the jet, providing self-forcing 
and suggesting to some degree a global resonance. 

Under natural jet conditions for a fixed Reynolds number, Reisenthel et al. (1991) 
found that the Strouhal number of the column mode decreased with downstream 
distance, falling in a range from 0.6 < St, < 0.4 for 0.5 < x / D  < 6.0. This brackets 
the range of values tabulated by Gutmark & Ho (1983) for different jet facilities. In  
the light of this result, with respect to the column-mode instability the &ff mode 
corresponds to St, = 0.54, which places it in the most-amplified frequency region. 

In  general it appeared that the modes that were multiples of &ff developed 
essentially as linear additive modes. In  contrast, the modes that were derived by an 
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FIGURE 19. Streamwise development of azimuthal variation in momentum thickness in 
Cases B (a) ,  C (6 )  and A ( c ) .  

interaction with &ff grew a t  an enhanced rate. The fact that  the frequencies of all 
these modes appear in the spectrum of pressure fluctuations a t  the lip of the jet 
indicates that they are to some degree self-forced. Except for the input mode, all the 
other modes had to originate from interactions that occurred downstream, 
communicated back to the jet lip by pressure feedback. Such a downstream influence 
can account for the fine tuning of these modes which is exhibited by the sharp 
spectral peaks. 

3.5. Mean flow effects 
The effect of the three input conditions (A, B, C) on the mean flow is presented in 
figures 19 and 20. In  figure 19, we show this from a viewpoint which illustrates the 
azimuthal variation of the momentum thickness a t  different x-positions. We 
construct this with a two-dimensional polar coordinate system, where a t  any x- 
location the local radius equals the normalized momentum thickness, B(x, ?)lo,. For 
clarity, rather than showing the discrete points, we show a curve which is the result 
of the best fit of the data to a general, origin-centred ellipse. I n  the fit, we assumed 
a horizontal symmetry plane. The different x-positions are denoted by different line 
types. In  this representation, the azimuthal locations of the amplitude maxima for 
the input m = f 1 modes are on a line parallel with the abscissa. 

When the helical mode grows to large amplitude, we expect a nonlinear interaction 
to result in the modification of the mean flow. For helical-mode pairs with azimuthal 
wavenumbers & m and streamwise wavenumber ar, the difference interaction 
(ar, &m)-(a,, + m )  = (0, +2m) produces an azimuthal variation of the mean flow 
with azimuthal wavenumber k 2m. Physically, this will appear as a cos 2y variation 
of the shear-layer thickness (see for example Long & Peterson 1992). From the 
viewpoint used in figure 19, this will appear as an ellipse-shaped distribution of the 
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X l D  
FIGURE 20. Streamwise development of azimuthally summed momentum thickness for three cases 
(Case A (A),  Case B (O) ,  Case C (0)) ; and unforced jet (-) and two m = 0 forced cases (2050 Hz 
(---) and 2500 Hz ( .  * . .)) from Corke et al. (1991). 

momentum thickness. The degree of eccentricity above one is a measure of the 
amount of mean flow distortion resulting from the growth of the helical modes. 

The momentum thickness distribution for the base flow case (B) is shown in figure 
19 (a) .  Upstream of x / D  = 0.25, the azimuthal distribution is circular, indicating that 
the weakly amplified helical mode input in this case is not of sufficient amplitude to 
distort the mean flow. Further downstream of this point, the amplitude reached by 
this mode does result in a small degree of eccentricity, with a maximum value of 1.15 
by the last x/D-position. 

The momentum-thickness distribution for the conditions to promote the resonant 
growth of the subharmonic helical mode (Case A) is shown in figure 19(c). In  this 
case, the rapid growth in amplitude of the helical mode produces a noticeable 
azimuthal mean flow distortion by the first measurement station. By the last x- 
location the value of the eccentricity in the mean flow is 1.50. 

For the near-subharmonic resonant case (C), the momentum thickness distribution 
is shown in the middle of figure 19(b). In  this case the growth in amplitude of the 
helical mode at &ff is somewhat slower than for the exact subharmonic in Case A, so 
that the first indication of an azimuthal distortion of the mean flow occurs somewhat 
downstream at x / D  = 0.177. Also, the spreading of the momentum thickness is 
visibly less in this case than in Case A, although the maximum eccentricity reached 
is the same. 

In order to get a quantitative comparison of the total growth of the momentum 
thickness among the three cases, the areas of the fitted ellipsi were determined and 
plotted in figure 20. Included in the figure is the growth of the momentum thickness 
in the natural (unforced) jet, and in the jet with m = 0 mode forcing comparable to 
Cases A and C, which were taken from Corke et al. (1991). For the natural jet and 
m = 0 forced cases, we assumed that the azimuthal distribution was circular. 

Comparing Cases A 4  and the unforced jet shows a consistent pattern. In Case B, 
the addition of the weakly amplified helical mode had in general little effect on the 
spreading of the jet. This is evident from the overlap of the Case B values on the solid 
curve up to x/D = 0.25. 

The near-subharmonic helical-mode resonance in Case C led to  a more enhanced 
growth of the momentum thickness over the natural jet. By the last x/D-position, 
the azimuthally summed momentum thickness was 50% larger. By far the largest 
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growth in the momentum thickness occurred for exact subharmonic resonance in 
Case A. By the last z/D-location, the azimuthally summed momentum thickness was 
twice as large as that in Case C, and three times that of the natural jet. 

In order to document the initial linear and weakly nonlinear behaviour, we have 
confined our measurements to be within a few wavelengths of the jet exit lip. We 
expect that the major impact of the helical-mode seeding on the jet evolution will 
occur even further downstream of our measurement stations. In the path to 
turbulence, the development of three-dimensionality is the inevitable outcome. The 
helical-mode resonance documented here allows a mechanism for the early 
introduction of coherent three-dimensional modes, and suggests a scenario for the 
early evolution of turbulent jets. 

4. Conclusions 
Confirmation of quasi-two-dimensional linear theory predictions of the relative 

insensitivity of amplification rates and phase velocities to azimuthal wavenumber, 
m, came from comparisons between forced modes with m = 0 and m 1, at the same 
streamwise wavenumber. These compared well with each other, as well as with linear 
theory predictions. The shear-layer curvature parameter in these cases was rilei = 
260. The analysis of Ahmadi-Moghadam (1986) had predicted an insensitivity to 
azimuthal wavenumber up to m = f 4 for r;/Oi = 100. From our results, we expect to 
be able to excite helical modes up to m = f 6 ,  the limit of the 12 speaker 
arrangement. 

By the proper selection of streamwise wavenumbers of m = f 1 helical modes with 
and without a simultaneously forced axisymmetric mode, the forced jet’s developing 
shear layer exhibited very different modal compositions and downstream de- 
velopment. The first case (B) consisted of a weakly amplified (from a linear stability 
point of view) m = f 1 mode at a low initial amplitude. It was found to act as a 
passive additive mode which did not interact with or overwhelm the other natural 
instability modes. As such, this case provided a reference for the second case (A) 
where, in addition to the m = f 1 mode, an m = 0 mode at  the harmonic frequency 
was added. The combination of these two lead to the resonant growth of the 
subharmonic helical mode. A weakly nonlinear three-wave amplitude evolution 
equation with a coupling coefficient derived from the data was found to model the 
enhanced growth of the subharmonic mode well. 

The last case (C) was meant to be a counterpart of the Re, = 70000 forced case of 
Corke et al. (1991) whereby an input m = & 1 mode was substituted for an m = 0 
mode. The frequency of the input mode was the same and near the most-amplified 
value based on linear theory. This input had the identical effect to the previous work, 
in that it led to the appearance of Ath-based combinations of the forcing frequency 
(ff), with near-subharmonic values of &jf and &fv appearing. The results confirmed 
the resonant amplification of the &ff mode. This was also well represented by the 
weakly nonlinear amplitude equation, including the dependence of the streamwise 
amplification rate on the azimuthal change in the fundamental-mode initial 
amplitude. The coupling coefficient in this case was approximately one-third that for 
exact fundamental-subharmonic resonance in Case A. 

Finally, in both cases with resonant helical mode growth (C and A) we documented 
a cos 27 azimuthal variation of the mean flow which was attributable to a difference 
interaction between the m = & 1 helical modes. The azimuthally summed momentum 
thickness for conditions of exact subharmonic resonance was 300 % larger than in the 
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unforced jet. This was measured only three fundamental-mode wavelengths 
downstream of the jet exit. The slope of the growth indicates a potential increase 
further downstream of that point. 
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